First Total Synthesis of (-)-Fumitremorgin C¹

Pedro H. H. Hermkens, Ralf Plate, Harry C. J. Ottenheijm*

Department of Organic Chemistry, University of Nijmegen Toernooiveld 6525 ED Nijmegen, The Netherlands

(Received in UK 20 November 1987)

Abstract: The first total synthesis of the tremorgic mycotoxin fumitremorgin C (1a) employing 6-methoxy-N-hydroxytryptophan (5a) is presented. Our approach features formation of the nitrone (6a), stereoselective cycloaddition to yield 7a, ring opening and coupling with an L-proline derivative to form 14. Base-catalysed epimerisation gave 16, which was converted into the title compound by deprotection of the amine function, dioxopiperazine formation and dehydration.

Recently, we reported the first stereoselective approach to tetrahydro- β -carbolines (c.f. 7) having a masked C(1) 2-hydroxy-2-methylpropyl side chain moiety.³ Subsequent to the this N-hydroxytryptophan these development of efficient. mediated synthesis of tetrahydro- β -carbolines, one of our goals has been the synthesis of the skeleton of fumitremorgins.² Through the synthesis of the fumitremorgin C analog 2b, we became evidence -though inconclusive- that this compound is not the skeleton of fumitremorgin C (1a) but a C(14a) epimer. It should be born in mind that at that time the stereochemistry at C(14a) of the natural product was unknown.4

Unfortunately, our approach to 2b employing the cycloadduct 7b invariably led to compounds having a *trans*-relationship between the tetrahydro- β -carbolines C(1) and C(3) substituents (Scheme I). So the problem we faced was a selective epimerisation at the carbon atom C(3) of 7 or one of its successors. The second challenge to address was the introduction of the methoxy substituent at the 6-position of the indole nucleus.

Reported here are solutions to both of these problems. The result is an efficient synthesis of the

optically pure tremogenic mycotoxin fumitremorgin C (1a) and it isomers 2a-4a.

Over the last years other members of the fumitremorgin-verruculogen class of mycotoxins have been targets for total synthesis.⁵

Results

Nitrone 6a (Scheme I) was prepared by a known procedure^{2,3,6} from 5a. 1,3-Dipolar cycloaddition of isobutene with 6a proceeded regio- and stereoselectively to give quantitatively the *trans*-adduct 7a. The desired cleavage of the isoxazolidine N-O bond was accomplished by treatment of 7a with zinc dust at 40°C in an argon atmosphere.⁷

i) HC(OMe)3 / H⁺ ii) isobutene in toluene (120°C, 8 bar) iii) Zn / HOAc

Surprisingly⁸, this procedure gave a diastereometric mixture of 8a (*trans*) and 9a (*cis*) in 98% yield. The ratio 8a/9a varied from 12.5/1 to 25/1. We have not established unambiguously whether this epimerisation at C(3) occurs with 7a or with 8a, mainly because the efficiency of this process was too low to be of synthetic value. We rather preferred to study the epimerisation of 8a and its progeners.

Epimerisation

First we established that isoxazolidin tetrahydro- β -carbolines, 7 cannot be epimerised. Treatment with base (NaH or tBuOK in dimethoxyethane) gave 12 in 75% yield. (Scheme II) Therefore we selected the N(2) amides as target molecules for epimerisation studies. As a model compound we selected the N(2) sulfonamide derivative 10, which was prepared in 82% yield by treatment of $8b^2$ with TosCl in pyridine. An efficient method for epimerisation of 10 was only found after several unsuccesful attempts. No isomerisation occured when 10 was treated with Et_3N in dichloromethane. Employment of the stronger base NaOEt in ethanol, led to the undesired β -carboline 12 as the main product.⁹The method of choice for the anticipated epimerisation appeared to be treatment of 10 with DBU in CH₂Cl₂ at room temperature. The *cis/trans* equilibrium ratio of this reaction was estimated as 11/10=8.5/1.0. Minute quantities (5%) of 12 as side product were observed.¹⁰

That epimerisation occured selectively at the C(3) carbon was secured by the following experiment. Reaction of 10 with DBU in a mixture of CD₃OD and dichloromethane led to deuterium incorporation exclusively at the C(3) carbon; in addition the side product 12 was detected again.

Encouraged by these results we selected the diastereomeric amides 14 and 15 (Scheme III) as targets for epimerisation. These compounds were prepared in the following manner. Treatment of the racemic amine 8a with the acid chloride of TrOC-L-proline (13) at $-20^{\circ}C^{11}$ provided in 77% yield the amides 14 and 15 (diastereomeric ratio 1/1.5),¹² which were separated by column chromatography. Isomerisation of the key intermediate 14 into its epimer 16 was achieved now as follows. When 14 was treated with DBU in chloroform for 2 days at 45°C an equilibrium ratio of 14/16=1/1 was observed. Fortunately, this procedure afforded no oxidized β -carbolines. Subsequently, 15 was treated in the same manner to give an equilibrium ratio of 15/17=2/3. These diastereomeric mixtures could easily be separated by column chromatography where upon the *trans* compounds were subjected again to this epimerisation proces. This way the *trans* compounds 14 and 15 could be converted nearly completely into the corresponding *cis* compounds 16 and 17, respectively.

The proline amine functions of the compounds 14-17 were deprotected by means of zinc dust in refluxing methanol to give the amines 18-21 which -under these conditions- cyclized to give the pentacyclic compounds 22-25. We noticed that the *trans* compounds 22 and 23 were obtained quantitatively within 10 minutes, whereas the *cis* compounds 24 and 25 were obtained in 63% and 45% yield, respectively only after prolonged reaction of 3 days.

Comparison of CPK models revealed that in 24 and 25 there is considerable steric hindrance between the side-chain and the proline moiety. This observation might rationalise the rather sluggish dioxopiperazine formation in the *cis*-series.

Alternatively, the four pentacycles 22-25 could be prepared -though less efficiently for 24 and 25- from the isomers 8a and 9a (*vide-supra*). Thus coupling of 8a and 9a with CBz-L-proline acid chloride (26) (Scheme III) provided the amides 27 and 28 (ratio 1/1.25) in 79% and 29 and 30 (ratio 1/1.15) in 71% yield, respectively. Again kinetic resolution was observed.² Chromatographic separation of the diastereomers, followed by deprotection by catalytic hydrogenation and subsequent ring closure of the intermediates 18-21 afforded again the pentacyclic dioxopiperazines 22 (100%), 23 (100%), 24 (10%) and 25 (10%), respectively. The yields again are indicating that ring closure of the *cis* compounds is unfavourable.

That no racemisation had taken place in the proline moiety during the coupling procedure was secured with the chiral shift reagens tris[3-((heptafluoropropyl)hydroxymethylene)camphorato]europium (III) as described earlier.² Stereochemical structure assignments are made by extending our previous results² assuming that no deviant behaviour is caused by the methoxy moiety on the indole nucleus.

For obvious reasons we finally subjected the pentacyclic compounds 22 and 23 to DBU in CHCl₃ at 60°C (vide supra) as well as to NaOEt in ethanol at 60°C. However no epimerisation was observed.

Finally, transformation of the alcohol functions of 22-25 into the alkene functions of 1a-4a was accomplished by means of SOCl₂ in pyridine at -40°C.² The desired alkenes 1a-4a were accompanied by products due to Hofmann eliminations and -in some cases- by the corresponding chlorides. Thus 24 gave 1a (4%) and 33 (44%) and 22 gave 2a (65%), 31 (11%) and 35 (7%) and 23 gave 3a (28%), 32 (13%) and 36 (12%) and 25 gave 4a (5%) and 34 (16%). It was discouraging to observe that in the *cis* series the dehydration afforded mainly the undesired products of Hofmann elimination. A tentative rationale comes from studying the CPK models; the proton participating in the Saytzeff elimination is sterically more hindered than the corresponding proton in the *trans* series. Attempts to isomerize the olefins 31-34 into 1a-4a by means of catalytic amounts of acid or a metal complex failed.

Of the four pentacycles 1a-4a only the product 1a possessed spectral characteristics identical to those reported for fumitremorgin C.⁴

Discussion

From this result we concluded that the product 2b we reported earlier² is indeed the C(14a) epimeric analog of the natural product.

The synthesis of fumitremorgin C (1a) as well as the developed method to achieve the desired tetrahydro- β -carboline having a *cis* relationship of the C(1), C(3) substituents demonstrates the utility of N-hydroxytryptophan in the synthesis of indole alkaloids.

Epimerisation at the C(3) carbon in 1,3-disubstituted-tetrahydro- β -carbolines was accomplished only when N(2) amides were used and steric interactions absent.

The methodology used is sufficiently flexible to be adapted to the preparation of other members of the fumitremorgin - vertuculogen group. This will be demonstrated in future reports.

Experimental Section

Melting points were taken on Koefler hot stage (Leitz-Wetzlar) and are uncorrected. Ultraviolet spectra were measured with a LKB spectrophotometer, Model 4050. Proton magnetic resonance spectra were measured on a Bruker WH-90 spectrometer. Chemical shifts are reported as δ values (parts per million) relative to tetramethylsilane as an internal standard. As a chiral reagent we used tris[3-((heptafluoropropyl) hydroxy-methylene)-*d*-camphorato]europium(III) (Janssen Chimica, Belgium). Mass spectra were obtained with a double focusing VG 7070E spectrometer. Thin layer chromatography (TLC) was carried out by using Merck precoated silicagel F-254 plates (thickness, 0.25 mm). Spots were visualized with a UV hand lamp, iodine vapor, Cl₂-TDM.¹³ For column chromatography Merk silicagel 60H was used. Solvent systems used were as follows: system A: CHCl₃/MeOH,93/7,v/v; system B: CHCl₃/MeOH,97/3, v/v; system C:EtOAc; system D:CHCl₃/MeOH,99/1,v/v.

2,2-Dimethyl-5-(ethoxycarbonyl)-9-methoxy-4,5,6,11b-tetrahydro-isoxazolidin[2,3-a]-β--carboline (7a)

Thermal reaction conditions: A stirred solution of $6a^{6}$ (2.04 g, 7.06 mmol) in dry toluene (75 mL) and isobutene (50 mL) was heated for 4h at 120°C in a 250 mL pressure vessel. The pressure increased up to 9 bar. Filtration of the mixture gave 1.99 g (82%) product. Evaporation of the filtrate and recrystallisation of the residue (CH₂Cl₂) gave additional 0.3 g (12%) of 7a. Total yield (94%); mp 263-265°C ; R_f 0.57 (solvent system A); UV (methanol) λ max 226,265, 269, 297 nm, λ min 250, 280 nm; EIMS (70 eV) m/z (relative intensity), 344 (M⁺, 73%), 271 [C₁₆H₁₉N₂O₂]⁺, 100%), 198 ([C₁₂H₁₀N₂O]⁺, 55%), exact mass for C₁₉H₂₄N₂O₄ calcd. 344.1736, found 344.1731; ¹H NMR δ 7.89 (br s, 1H, NH), 7.37-6.70 (m, 2H, C(7)-C(8)H), 6.81 (s, 1H, C(10)H), 4.85 (X part of ABX spectrum, 1H, C(11b)H), 4.29 and 4.24 (2 q from diastereotopic protons, 2H, OCH₂CH₃), 4.09 (t, 1H, ³J=7.0 Hz, C(5)H), 3.78 (s, 3H, OCH₃), 3.02 (d, 2H, ³J=7.0 Hz, C(6)H), 2.42 and 2.23 (AB part of ABX spectrum, 2H, ²J=12.3 Hz, ³J=6.7 Hz, ³J=11.1 Hz, C(1)H₂), 1.42 and 1.31 (2xs, 6H, 2x CH₃), 1.28 (t, 3H, OCH₂CH₃); Anal. Calcd. for C₁₉H₂₄N₂O₄ (MW 344.412) : C, 66.26; H, 7.02; N, 8.13. Found: C, 66.11; H, 7.02; N, 8.12. High-Pressure reaction conditions: The nitrone 6a (288 mg, 1 mmol) and isobutene (3 mL)

High-Pressure reaction conditions: The nitrone **6a** (288 mg, 1 mmol) and isobutene (3 mL) were dissolved in 4 mL DMF and brought into a teflon high-pressure vessel, which was placed in a high-pressure apparatus. After 20h at 12 kbar the reaction was completed as monitored by TLC. Filtration of the mixture gave 255 mg (75%) product. Evaporation of the filtrate and recrystallisation of the residue gave additional 40 mg (11%) of **7a**. Total yield 86%.

1-(2'-Hydroxy-methylpropyl)-3-(ethoxycarbonyl)-7-methoxy-1,2,3,4-tetrahydro-β-carboline (*trans* 8a, *cis* 9a)

Activated zinc dust was added portionwise to a stirred solution of 7a (750 mg, 2.2 mmol) in 100 mL glacial acetic acid. The reaction mixture was kept at 40°C for 7 h and during that time argon was bubbled through the solution. The reaction was monitored by TLC (solvent system A). The reaction mixture was filtered and washed with CH_2Cl_2 , the filtrate concentrated to dryness and the residue dissolved in CH_2Cl_2 . This solution was washed successively with saturated NaHCO₃, brine, and dried over Na₂SO₄. The solvent was evaporated in vacuo and the residue subjected to flash chromatography (CHCl₃/MeOH, 98/2. v/v) to yield 32 mg (4%) of 9a and 706 mg (94%) of 8a. These products resisted crystallisation attempts.

cis-product 9a: $R_f 0.30$ (solvent system B); EIMS (70 eV) m/z (relative intensity) 346 (M⁺, 20%), 273 ($[C_{16}H_{21}N_2O_2]^+$, 100%), 199 ($[C_{12}H_{11}N_2O]^+$, 25%); exact mass for $C_{19}H_{26}N_2O_4$ calcd. 346.1893, found 346.1892; ¹H NMR & 8.86 (br s, 1H, N(9)H), 7.38-6.72 (m, 2H, C(5)-C(6)H), 6.81 (s, 1H, C(8)H), 4.44-4.08 (X part of ABX spectrum, 1H, C(1)H), 4.26 (q, 2H, OCH₂CH₃), 3.83 (s, 3H. OCH₃), 3.78 (X part of ABX spectrum, 1H, C(3)H), 3.04 and 2.77 (AB part of ABX spectrum, 2H, ²J=15.3 Hz, ³J=4.0 Hz, ³J=11.5 Hz, C(4)H₂), 2.29 (br s, 2H, N(2)H and OH), 2.11 and 1.84 (AB part of ABX spectrum, 2H, ²J=14.7 Hz, ³J=6.0 Hz, ³J=6.0 Hz, C(1)-CH₂), 1.39 (s, 6H, 2xCH₃), 1.33 (t, 3H, OCH₂CH₃).

trans-product 8a: $R_f 0.27$ (solvent system B); EIMS (70 eV) m/z (relative intensity) 346 (M⁺, 39%), 273 (100%), 199 (40%); exact mass for $C_{19}H_{26}N_2O_4$ calcd. 346.1893, found 346.1889; ¹H NMR δ 7.83 (br s, 1H, N(9)H), 7.40-6.73 (m, 2H, C(5)-C(6)H), 6.82 (s, 1H, C(8)H), 4.51 (X part of ABX spectrum, 1H, C(1)H), 4.23 (q, 2H, OCH₂CH₃), 3.93 (X part of ABX spectrum, 1H, C(3)H), 3.83 (s, 3H, OCH₃), 3.10 and 2.74 (AB part of ABX spectrum, 2H, ²J=15.6 Hz, ³J=4.8 Hz, ³J=10.0 Hz, C(4)H₂), 1.95 and 1.72 (AB part of ABX spectrum, 2H, ²J=14.5 Hz, ³J=5.1 Hz, ³J=12.3 Hz, C(1)-CH₂), 1.40 and 1.25 (2xs, 6H, 2xCH₃), 1.31 (t, 3H, OCH₂CH₃).

1-(2'-Hydroxy-methylpropyl)-2-(tosyl)-3-(ethoxycarbonyl)-7-methoxy-1,2,3,4-tetrahydro--β-carboline (10)

To a stirring solution of $8b^2$ (1.24 g, 4 mmol) in dry pyridine (10 mL) at 0°C in an argon atmosphere was added dropwise tosyl chloride (840 mg, 4.4 mmol) in dry pyridine (5 mL). The solution was allowed to warm to room temperature. The reaction was completed within one hour. After dilution with CH₂Cl₂ (100 mL) the solution was successively washed with, 2N aqueous HCl, brine and dried with Na₂SO₄. Evaporation of the filtrate gave 1.52 g (82%) of 10, which was crystallized from CCl₄/Et₂O; mp 165-168°C; R_f 0.75 (solvent system A); UV (methanol) λ max 220, 264, 269, 275, 281, 287 nm, λ min 257 nm; CIMS (100 eV) m/z (relative intensity) 471 ([M+1]⁺, 14%), 453 ([C₂₅H₂₉N₂O₄S]⁺, 60%), 413 ([C₂₂H₂₅N₂O₄S]⁺, 100%), 397 ([C₂₂H₂₅N₂O₃S]⁺, 51%), 315 ([C₁₈H₂₃N₂O₃]⁺, 35%); exact mass for C₂₅H₃₁N₂O₅S calcd. 471.195, found 471.193; ¹H NMR δ 8.54 (br s, 1H, N(9)H), 7.80-7.00 (m, 8H, C(5)-C(8)H and C₆H₄), 5.20 (t, 1H, ³J=6.1 Hz, C(1)H), 4.40 (q, 2H, OCH₂CH₃), 4.33 (X part of ABX spectrum, 1H, C(3)H), 3.20 and 2.97 (AB part of ABX spectrum, 2H, ²J=16.2 Hz, ³J=12.0 Hz, ³J=4.4 Hz, C(4)H₂), 2.58 (br s, 1H, OH), 2.22 (s, 3H, p-CH₃), 2.08 (d, 2H, ³J=6.1 Hz, C(1)-CH₂), 1.42 (t, 3H, OCH₂CH₃), 1.26 (s, 6H, 2xCH₃); Anal. Calcd. for C₂₅H₃₀N₂O₅S (MW 470.589): C, 63.81; H, 6.43; N, 5.95. Found: C, 63.19; H, 6.52; N, 5.99.

Epimerisation of N(2)-sulfonamide 10

A solution of sulfonamide 10 (108 mg, 0.23 mmol) and DBU (35 mg, 0.23 mmol) in dry CH_2Cl_2 (10 mL) was stirred at room temperature in an argon atmosphere for 24 h. The reaction mixture was washed with 0.1N aqueous HCl and brine, and dried with Na₂SO₄. Evaporation of the solvent and subsequent flash chromatography (n-hexane/EtOAc, 75/25, v/v) of the residue gave the epimerized product 11 (85%), starting material (10%) and aromatised product 12 (5%).²

Compound 11: This product resisted crystallisation attempts.Rf 0.90 (solvent system A); EIMS (70 eV) m/z (relative intensity) 470 (M⁺, 35%), 397 (100%), 169 (90%); exact mass for $C_{25}H_{30}N_2O_5S$ calcd. 470.1875, found 470.1878; ¹H NMR δ 9.98 (br s, 1H, N(9)H), 7.78-7.00 (m, 8H, C(5)-C(8)H and C₆H₄), 5.22 (br d, 2H, C(1)H and C(3)H), 4.05 and 4.03 (2q from diastereotopic protons, 2H, OCH₂CH₃), 3.44-3.28 (A part of ABX spectrum, 1H, C(4)Ha), 2.73-2.18 (m, 3H, C(4)Hb and C(1)-CH₂), 2.33 (s, 3H, p-CH₃), 2.09 (br s, 1H, OH), 1.61 and 1.36 (2xs, 6H, 2xCH₃), 1.16 (t, 3H, OCH₂CH₃).

Deuterium incorporation at C(3)-position of 10. A solution of 10 (106 mg, 0.2 mmol) and DBU in CH₂Cl₂/CD₃OD, 8/2, v/v (4 mL) was stirred at room temperature in an argon atmosphere for 24 h. The solvent was evaporated and the residue subjected to flash chromatography (CHCl₃) to yield 140 mg (80%) C(3)-deuterated 11: EIMS (70 eV) m/z (relative intensity) 471 (M⁺, 22%), 398 ($[C_{22}H_{24}DN_2O_3S]^+$, 100%), 170 ($[C_{11}H_8DN_2]^+$, 69%); ¹H NMR δ 9.96 (br s, 1H, N(9)H), 7.72-6.98 (m, 8H, C(5)-C(8)H and C₆H₄), 5.19 (br d, 1H, C(1)H), 4.05 (q, 2H, OCH₂CH₃), 3.44-3.24 (A part of AB spectrum, 1H, C(4)Ha), 2.71-1.90 (B part of AB spectrum, 1H, C(4)Hb and AB part of ABX spectrum, 2H, C(1)-CH₂), 2.33 (s, 3H, p-CH₃), 1.86 (br s, 1H, OH), 1.60 and 1.36 (2xs, 6H, 2xCH₃), 1.15 (t, 3H, OCH_2CH_3).

8-(2'-Hydroxy-2'-methylpropyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-[1',6'--2,3]-β-carboline-(5aHa, 8Ha, 14aHβ)-1,6-dione (22) and 8-(2'-Hydroxy-2'-methylpropyl)--7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-[1',6'-2,3]-β-carboline-(5aHα, 8Hß. $14aH\alpha$)-1,6-dione (23)

Method a: A solution of 8a (680 mg, 1.97 mmol) and Et₃N (200 mg, 1.98 mmol) in dry CH₂Cl₂ (10 mL) was added dropwise to a cooled (-20°C) stirring solution of L-TrOC-Pro-Cl¹⁴ (2.43 mmol) in dry CH₂Cl₂ (20 mL) in an argon atmosphere. The reaction mixture was allowed to warm to room temperature and was monitored by TLC (solvent system A; 15 R_f 0.53.; 14 R_f 0.49). After one hour the reaction was completed, and the reaction mixture was washed successively with 0.1 N aqueous HCl, 0.1 N NaHCO₃ and brine and dried with Na_2SO_4 . Evaporation of the solvent in vacuo gave a crystalline material, which was subjected to flash chromatography (CHCl₂/MeOH, 99.7/0.3, v/v) to yield 527 mg (43%) of 15 and 415 mg (34%) of 14. Removal of the N-protecting group was accomplished quantitatively by refluxing the dipeptides in methanol (50 mL) with zinc dust for 10 minutes. Filtration and evaporation of the solvent gave 336 mg (43%) of 23 and 266 mg (34%) of 22. Yields are based on 8a.

Method b: Coupling of 8a (840 mg, 2.43 mmol) with L-CBz-Pro-Cl² as described above and subsequently flash chromatography (CHCl₃/MeOH, 99.25/0.75, v/v) gave 610 mg (44%) of 28 (R_f 0.62, solvent system A) and 492 mg (35%) of 27 (R_f 0.53, solvent system A). Of these N-protected dipeptides the CBZ-group was removed by catalytic hydrogenation using Pd-C in ethanolic solution at atmospheric pressure. Filtration and evaporation of the solvent gave 403 mg (44%) of 23 and 320 mg (32%) of 22.

Compound 22: $R_f 0.26$ (solvent system B); mp 270-271°C (CHCl₃/n-hexane); $[\alpha]_D^{22}$ +112 (c=1.25, methanol); UV (methanol) λ max 225, 267, 297 nm, λ min 251, 281 nm; EIMS (70 eV) m/z (relative intensity) 397 (M⁺, 46%), 379 (8%), 324 (100%), 199 (42%); exact mass for C₂₂H₂₇N₃O₄ calcd. 397.2002, found 397.2003; ¹H NMR 8 8.69 (br s, 1H, NH), 7.33-6.68 (m, 2H, CHCl_32) (CHCl_32) (CHCl_3 C(12)-C(13)H), 6.81 (s, 1H, C(10)H), 5.93 (t, 1H, ${}^{3}J=5.4$ Hz, C(8)H), 4.36 (X part of ABX spectrum, 1H, C(14a)H), 4.24-3.97 (m, 1H, C(5a)H), 3.85-3.51 (m, 2H, C(3)H₂), 3.82 (s, 3H, OCH₃), 3.30 and 2.89 (AB part of ABX spectrum, 2H, ${}^{2}J=15.3$ Hz, ${}^{3}J=3.9$ Hz, ${}^{3}J=11.7$ Hz, C(13)H) (C(13)H) (C C(14)H₂), 2.60-1.68 (m, 7H, C(4)H₂-C(5)H₂, C(8)-C(1')H₂ and OH), 1.43 and 1.34 (2xs, 6H, $2xCH_3$). Addition of the chiral shift reagent tris[3-((heptafluoropropyl)hydroxy-methylene)-*d*-camphorato]europium (III) to the CDCl₃ solution of 22 did not cause splitting of signals. Anal. Calcd. for $C_{22}H_{27}N_3O_4$. 0.4CHCl₃ (Mw 445.229): C, 60.43; H, 6.20; N, 9.44. Found: C, 60.28; H, 6.17; N, 9.43.

Compound 23: $R_f 0.26$ (solvent system B); mp 234-236°C (CHCl₃/n-hexane); $[\alpha]_D^{22}$ -159 (c=2.0, methanol); UV (methanol) λ max 225, 267, 297 nm, λ min 250, 278 nm; E_H IMS (70 eV) m/z (relative intensity) 397 (M⁺, 36%), 379 ([$C_{22}H_{25}N_3O_3$]⁺, 5%), 324 ($C_{18}H_{18}N_3O_3$]⁺, 100%), 199 (38%); exact mass for $C_{22}H_{27}N_3O_4$, calcd. 397.2002, found 397.1996; ¹H NMR δ 9.09 (br s, 1H, NH), 7.40-6.71 (m, 2H, C(12)-C(13)H), 6.82 (s, 1H, C(10)H, 6.00-5.87 (X part of ABX spectrum, 1H, C(8)H), 4.40 (X part of ABX spectrum, 1H, C(14a)H), 4.23-3.33 (m, 3H, C(5a)H and C(3)H₂), 3.83 (s, 3H, OCH₃), 2.95-1.73 (m, 9H, 2x AB part of ABX spectrum C(14)H₂ and C(8)-C(1')H₂, C(4)H₂-C(5)H₂ and OH), 1.53 and 1.35 (2xs, 6H, 2xCH₃). Addition of the chiral shift reagent tris[3-((heptafluoropropyl)hydroxymethylene)-*d*-camphorato]europium (III) to the CDCl₃ solution of **23** did not cause splitting of signals. Anal. Calcd. for $C_{22}H_{27}N_3O_4$. 0.8 CHCl₃ (Mw 492.981) : C, 55.55; H, 5.68; N, 8.52. Found: C, 55.28; H, 5.64; N, 8.48.

8-(2'-Hydroxy-2'-methylpropyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-[1',6'--2,3]- β -carboline-(5aH α , 8H α , 14aH α)-1,6-dione (24) and 8-(2'-Hydroxy-2'-methylpropyl)--7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-[1',6'-2,3]- β -carboline-(5aH α , 8H β , 14aH β)-1,6-dione (25)

Method a: Compound 9a (155 mg, 0.45 mmol) was coupled with L-CBz-Pro-Cl (0.56 mmol) as described for the preparation of 22 abd 23. This procedure gave 75 mg (29%) of 29 and 110 mg (42%) of 30. The N-protecting group of these dipeptides was removed by catalytic hydrogenation using Pd-C in ethanolic solution at room temperature and atmospheric pressure to yield 20 and 21, respectively. Cyclisation to the corresponding dioxopiperazines did not occur under these conditions. This was achieved by refluxing a solution of the amines 20 and 21 in ethanol to give 18 mg (10%) of 24 and 18 mg (10%) of 25.

Method b (Epimerisation of N-protected dipeptides 14 and 15): A solution of 14 or 15 (325 mg, 0.53 mmol) and DBU (85 mg, 0.53 mmol) in dry CHCl₃ was stirred at 45° C in an argon atmosphere. Monitoring of the reaction by TLC showed that after 48 h. the equilibrium was reached. The reaction mixture was washed with 0.1 N aqueous HCl, brine and dried with Na₂SO₄. After evaporation of the solvent the residue was subjected to flash chromatography (CHCl₃/MeOH, 99.5/0.5, v/v) to yield 162 mg (50%) of 16 (R_f 0.42, solvent sytem B) and 162 mg starting material 14 (or 217 mg (67%) of 17 (R_f 0.40, solvent system B) and 108 mg starting material 15). Removal of the N-protecting group and cyclisation to the diketopiperazines 24 and 25 was accomplished by refluxing a solution of 16 or 17 in a methanol (5 mL) with zinc dust for 3 days. After filtration and evaporation of the solvent, the residue was subjected to flash chromatography (CHCl₃/MeOH, 99.5/0.5, v/v) to yield 65 mg (63%) of 24 (or 63 mg (45%) of 25).

Compound 24: Crystallisation attempts were unsuccesful. $R_f 0.34$ (solvent system B); $[\alpha]^{22}_D$ -62.5 (c=3.8, methanol); UV (methanol) $\lambda max 226, 267, 297$ nm, $\lambda min 250, 280$ nm; EIMS (70 eV) m/z (relative intensity) 397 (M⁺, 42%), 279 (6%), 324 (100%), 199 (38%); exact mass for $C_{22}H_{27}N_3O_4$ calcd. 397.2002, found 397.1998; ¹H NMR δ 8.81 (br s, 1H, NH), 7.43-6.67 (m, 2H, C(12)-C(13)H), 6.85 (s, 1H, C(10)H), 5.67 (X part of ABX spectrum, 1H, C(8)H), 4.20-4.00 (m, 2H, C(5a)H and X part of ABX spectrum C(14a)H), 3.80 (s, 3H, OCH₃), 3.72-2.93 (m, 4H, C(3)H₂ and AB part of ABX spectrum C(14)H₂), 2.49-1.64 (m, 7H, C(4)H₂-C(5)H₂, AB part of ABX spectrum C(8)-C(1')H₂ and OH), 1.38 and 1.13 (2xs, 6H, 2XCH₃).

Compound 25: Crystallisation attempts were unsuccesful. $R_f 0.34$ (solvent system B); $[\alpha]^{22}_D + 30$ (c=4.3, methanol); UV (methanol) $\lambda max 225, 267, 297$ nm, $\lambda min 249, 281$ nm; EIMS (70 eV) m/z (relative intensity) 397 (M⁺, 40%), 479 (7%), 324 (100%), 199 (45%); exact mass for $C_{22}H_{27}N_3O_4$ calcd. 397.2002, found 397.2000; ¹H NMR δ 9.56 (br s, 1H, NH), 7.35-6.71 (m, 2H, C(12)-C(13)H), 6.81 (s, 1H, C(10)H), 4.94-4.73 (X part of ABX spectrum, 1H, C(8)H), 4.34-3.98 (m, 2H, C(5a)H and X part of ABX spectrum C(14a)H), 3.82 (s, 3H, OCH₃), 3.84-1.71 (m, 11H, C(3)H₂, AB part of ABX spectrum C(14)H₂, AB part of ABX spectrum C(8)-C(1')H₂, C(4)H₂-C(5)H₂ and OH), 1.45 and 1.41 (2xs, 6H, 2xCH₃).

Dehydration of 22-25

General method: To a stirred and cooled (-40°C) solution of the alcohol in dry pyridine (1 mL per 0.1 mmol of alcohol) was added freshly distilled thionyl chloride (1.5 equivalents) in an argon atmosphere. The reaction was monitored by TLC (solvent system C). The solution was allowed to warm to room temperature. After dilution with CH_2Cl_2 the resulting mixture was washed with 2 N aqueous HCl, brine and dried with Na₂SO₄. Evaporation of the solvent gave a mixture of reaction products, which were separated by flash chromatography.

Reaction of 22 (100 mg, 0.25 mmol) with SOCl₂ (44mg, 0.375 mmol) gave after flash

chromatography (EtOAc/n-hexane, 60/40, v/v) 7 mg (7%) of 35, 10 mg (11%) of 31 and 62 mg (65%) of **2a**.

8-(2'-methyl-1'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-

-[1',6'-2,3]-β-carboline-(5aHα, 8Hα, 14aHβ)-1,6-dione (2a): Rf 0.42 (solvent system C); mp -[1',0'-2,3]-p-carbonne-(Sarid, Srid, 14arip)-1,0-dione (2a): K_f 0.42 (solvent system C); mp 261-263°C (EtOAc/n-hexane); $[\alpha]^{22}_{D}$ +250 (c=0.9, methanol); UV (methanol) λ max 230, 268, 297 nm, λ min 255, 282 nm; EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 82%), 324 (37%), 281 (100%), 199 (20%); ¹H NMR δ 7.76 (br s ,1H, NH), 7.32 (br d, 1H, C(13)H), 6.82 (s, 1H, C(10)H), 6.76 (m, 1H, C(12)H), 6.44 (d, 1H, ³J=9.3 Hz, C(8)H), 5.34 (d, 1H, ³J=9.3 Hz, C(1')H), 4.40 (X part of ABX spectrum, 1H, C(14a)H), 4.27-3.98 (m, 1H, C(5a)H), 3.82 (s, 3H, OCH₃), 3.82-3.50 (m, 2H, C(3)H₂), 3.27 and 2.87 (AB part of ABX spectrum, 2H, ²J=15.0 Hz, ³J=3.9 Hz, ³J=11.7 Hz, C(14)H₂), 2.51-1.98)m, 4H, C(4)H₂-C(5)H₂), 1.96 and 1.75 (2xs, 6H, 2xCH₃); Anal. Calcd. for C₂₂H₂₅N₃O₃ (Mw 379.463): C, 69.64; H, 6.64; N, 11.07. Found: C, 69.49; H, 6.69; N, 10.92 10.92.

8-(2'-methyl-2'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-

8-(2'-methyl-2'-propenyl)-7,8,14,14a-tetranydro-pyrrolidino-[1,2-c]-piperazino--[1',6'-2,3]-β-carboline-(5aHα, 8Hα, 14aHβ)-1,6-dione (31): R_f 0.46 (solvent system C); oil; EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 13%), 324 (100%), 199 (29%); ¹H NMR δ 7.86 (br s, 1H, NH), 7.39-6.74 (m, 2H, C(12)-C(13)H), 6.83 (s, 1H, C(10)H), 5.90 (t, 1H, ³J=7.2 Hz, C(8)H), 4.93 (br d, 2H, ²J=7.8 Hz, C(3')H₂), 4,42 (X part of ABX spectrum, 1H, C(14a)H), 4.20-4.03 (m, 1H, C(5a)H), 3.83 (s, 3H, OCH₃), 3.83-3.53 (m, 2H, C(3)H₂), 3.32 and 2.88 (AB part of ABX spectrum, 2H, ²J=15.3 Hz, ³J=3.3 Hz, ³J=12.0 Hz, C(14)H₂), 2.54 (d, 2H, ³J=7.2 Hz, C(1')H₂), 2.54-1.68 (m, 4H, C(4)-C(5)H₂), 1.91 (s, 3H, CH₃). 8-(2'-chloro-2'-methylpropyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino--[1'.6'-2.3]-8-carboline-(5aHα. 8Hα. 14aHβ)-1.6-dione (35): R_f 0.52 (solvent system C); oil,

-[1',6'-2,3]-β-carboline-(5aHα, 8Hα, 14aHβ)-1,6-dione (35): Rf 0.52 (solvent system C); oil, FABMS (7 kV at 1.4 mA) m/z (relative intensity) 418 ($[M+3]^+$, 2.5%), 416 ($[M+1]^+$, 6.6%), 185 (100%); ¹H NMR δ 8.80 (br s, 1H, NH), 7.37-6.74 (m, 2H, C(12)-C(13)H), 6.83 (s, 1H, C(10)H), 6.09 (t, 1H, ${}^{3}J=4.5$ Hz, C(8)H), 4.40 (X part of ABX spectrum, 1H, C(14a)H), 4.23-4.02 (m, 1H, C(5a)H), 3.87-3.57 (m, 2H, C(3)H₂), 3.83 (s, 3H, OCH₃), 3.27 and 2.87 (AB part of ABX spectrum, 2H, ${}^{2}J=15.0$ Hz, ${}^{3}J=3.8$ Hz, ${}^{3}J=11.4$ Hz, C(14)H₂), 2.60-1.60 (m, 4H, C(4)-C(5)H₂), 2.60 (d, 2H, ${}^{3}J=4.5$ Hz, C(1')H₂), 1.72 and 1.68 (2xs, 6H, 2xCH₃).

Reaction of 23 (100 mg, 0.25 mmol) and SOCl₂ (44 mg, 0.375 mmol) gave after flash chromatography (EtOAc/n-hexane, 55/45, v/v) 12 mg (12%) of 36, 12 mg (13%) of 32 and 27 mg (28%) of **3a**.

8-(2'-methyl-1'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-

-[1',6'-2,3]-β-carboline-(5aHα, 8Hβ, 14aHα)-1,6-dione (3a): R_f 0.37 (solvent system C); mp 259-269°C (EtOAc/n-hexane); $[\alpha]^{22}_{D}$ -327 (c=0.8, methanol); UV (methanol) λmax, 225, 270, 297 nm, λmin 254, 281 nm; EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 98%), 324 (100%), 199 (46%); ¹H NMR δ 7.68 (br s, 1H, NH), 7.36 (br d, 1H, C(13)H), 6.83 (s, 1H, C(10)H), 6.83-6.73 (m, 1H, C(12)H), 6.38 (d, 1H, ³J=9.8 Hz, C(8)H), 5.23 (2, 1H, ³J=9.8 Hz, C(1')H), 4.44 (X part of ABX spectrum, 1H, C(14a)H), 4.22-4.00 (m, 1H, C(5a)H), 3.95-3.33 (m, 2H, C(3)H₂), 3.82 (s, 3H, OCH₃), 3.09-1.90 (m, 6H C(4)-C(5)H₂ and AB part of ABX spectrum C(14)H₂), 2.03 and 1.76 (2xs, 6H, 2xCH₃); Anal. Calcd. for C₂₂H₂₅N₃O₃ (Mw 379.463): C, 69.64; H, 6.64; N, 11.07. Found: C, 69.33; H, 6.68; N, 10.88.

8-(2'-methyl-2'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino--[1',6'-2,3]- β -carboline-(5aH α , 8H β , 14aH α)-1,6-dione (32):R_f 0.42 (solvent system C); oil; EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 15%), 324 (100%), 199 (35%); ¹H NMR δ 7.96 (br s, 1H, NH), 7.42-6.75 (m, 2H, C(12)-C(13)H), 6.84 (s, 1H, C(10)H), 5.92 (t, 1H, ³J=6.6 Hz, C(8)H), 4.91 (d, 2H, ${}^{2}J=7.5$ Hz, C(3')H₂), 4.44 (X part of ABX spectrum, 1H, C(14a)H), 4.24-4.00 (m, 1H, C(5a)H), 3.94-3.33 (m, 2H, C(3)H₂), 3.84 (s, 3H, OCH₃), 3.04-1.62 (m, 6H, C(4)-C(5)H₂ and AB part of ABX spectrum C(14)H₂), 2.55 (d, 2H, ${}^{3}J=6.6$ Hz, C(1')H₂), 1.89 (s, 3H, CH₃).

8-(2'-chloro-2'-methylpropyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino--[1',6'-2,3]- β -carboline-(5aH α , 8H β , 14aH α)-1,6-dione (36): R_f 0.48 (solvent system C); oil; FABMS (7 kV at 1.4 mA) m/z (relative intensity) 418 ([M+3]⁺, 2%), 416 ([M+1]⁺, 5%), 185 (100%); ¹H NMR & 8.23 (br s, 1H, NH), 7.37-6.74 (m, 2H, C(12)-C(13)H), 6.83 (s, 1H, C(10)H), 6.23 (t, 1H, ${}^{3}J=5.4$ Hz, C(8)H), 4.49 (X part of ABX spectrum, 1H, C(14a)H), 4.28-4.00 (m, 1H, C(5a)H), 3.94-3.31 (m, 2H, C(3)H₂), 3.83 (s, 3H, OCH₃), 3.3-1.91 (m, 6H, C(4)-C(5)H₂ and AB part of ABX spectrum C(14)H₂), 2.31 (d, 2H, ${}^{3}J=5.4$ Hz, C(1')H₂), 1.71 (s, 6H, 2xCH₃).

Reaction of 24 (50 mg, 0.12 mmol) and SOCl₂ (19 mg, 0.185 mmol) gave after flash chromatography (EtOAc/n-hexane, 50/50, v/v) 20 mg (44%) of 33 and 2 mg (4%) of 1a. Fumitremorgin C (1a). $R_f 0.13$ (solvent system D); oil; $[\alpha]^{22}D^{-9}$ (methanol c=0.65); UV

(methanol) λmax 225, 270, 296 nm, λmin 255, 280 nm; EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 72%), 324 (100%), 199 (52%);¹H NMR (200 MHz) & 7.66 (br s, 1H, NH), 7.44 (d, 1H, C(13)H), 6.86-6.79 (m, 2H, C(10)H and C(12)H), 5.98 (d, 1H, ³J=9.6 Hz, C(8)H), 4.91 (dt, 1H, ³J=9.6 Hz, ⁴J=1.5 Hz, C(1')H), 4.23-4.08 (m, 2H, C(14a)H and C(5a)H), 3.84 (s, 3H, OCH₃), 3.68-3.60 (m, 1H, C(3)H₂), 3.51 and 3.10 (AB part of ABX spectrum, 2H, ³J=6.3 Hz, ³J=12.3 Hz, ²J=18.0 Hz, C(14)H₂), 2.46-1.91 (m, 4H, C(4)-C(5)H₂), 2.00 (d, 3H, ⁴J=1.5 Hz, CH₃), 1.66 (d,

3H, ⁴J=1.5 Hz, CH₃). 8-(2'-methyl-2'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-(33): R. 0.14 (solven -[1',6'-2,3]- β -carboline-(5aH α , 8H α , 14aH α)-1,6-dione (33): R_f 0.14 (solvent system D);EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 14%), 324 (100%), 199 (42%); ¹H NMR δ 8.00 (br s, 1H, NH), 7.42 (d, 1H, C(13)H), 6.84 (s, 1H, C(10)H), 6.78 (d, 1H, C(12)H), 5.40 (X part of ABX spectrum, 1H, C(8)H), 4.64 (br d, 2H, ${}^{2}J=22.0$ Hz, C(3')H₂), 4.20-3.97 (m, 2H, C(5a)H and C(14a)H), 3.84 (s, 3H, OCH₃), 3.67-1.73 (m, 10H, C(3)H₂, C(14)H₂, C(1')H₂ and $C(4)-C(5)H_2$, 1.64 (s, 3H, CH_3).

Reaction of 25 (40 mg, 0.1 mmol) and SOCl₂ (18 mg, 0.15 mmol) gave after flash chromatography (EtOAc/n-hexane, 60/40, v/v) 6 mg (16%) of 34 and 2 mg (5%) of 4a.

8-(2'-methyl-1'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino-

-[1',6'-2,3]- β -carboline-(5aH α , 8H β , 14aH β)-1,6-dione (4a): R_f 0.13 (solvent system D); EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 83%), 324 (100%), 199 (35%); ¹H NMR δ 7.85 (br s, 1H, NH), 7.42 (d, 1H, C(13)H), 6.85 (s, 1H, C(10)H), 6.73 (d, 1H, C(12)H), 5.54 (d, 1H, ³J=9.0 Hz, C(8)H), 4.95 (d, 1H,³J=9.0 Hz, C(1')H), 4.31-4.01 (m, 2H, C(14a)H and C(5a)H), 3.85 (s, 3H, OCH₃), 3.84-2.74 (m, 4H, C(3)H₂ and C(14)H₂), 2.45-1.75 (m, 4H, C(4)-C(5)H₂), 1.92

and 1.82 (2xs, 6H, 2xCH₃). 8-(2'-methyl-2'-propenyl)-7,8,14,14a-tetrahydro-pyrrolidino-[1,2-c]-piperazino--[1',6'-2,3]- β -carboline-(5aH α , 8H β , 14aH β)-1,6-dione (34): R_f 0.16 (solvent system D); EIMS (70 eV) m/z (relative intensity) 379 (M⁺, 21%), 324 (100%), 199 (54%); ¹H NMR δ 8.26 (br s, 1H, NH), 7.37 (m, 1H, C(13)H), 6.83 (s, 1H, C(10)H), 6.77 (m, 1H, C(12)H), 5.10-4.85 (m, 1H, C(8)H), 4.96 (br d, 1H,²J=8.1 Hz, C(3')H₂), 4.33-4.00 (m, 2H, C(14a)H and C(5a)H), 3.83 (s, 3H, OCH₃), 3.79-2.81 (m, 4H, C(3)H₂ and C(14)H₂), 2.53-1.67 (m, 6H, C(1')H₂ and $C(4)-C(5)H_{2}$, 1.80 (s, 3H, CH_{2}).

References

- 1. Synthetic studies on fumitremorgins II (see ref. 2). These results were presented on the 11th ICHC, Heidelberg (FRG), abstracts p 496, august 18, 1987.
- 2. Plate, R.; Hermkens P. H. H.; Behm, H.; Ottenheijm, H. C. J. J. Org. Chem. 1987, 52, 560.
- 3. Plate, R.; Hermkens, P. H. H.; Smits, J. M. M.; Ottenheijm, H. C. J. J. Org. Chem. 1986, 51, 309.
- 4. Cole, R.J.; Cox, R.H. Handbook of Toxic Fungal Metabolites; Academic: London, 1981; p 355.
- 5. See publications cited in reference 2 and also a) Boyd, S.A.; Thompson, W.J. J. Org. Chem. 1987, 52, 1790. b) O'Malley, G.; Cava, M.P.; Tetrahedron Lett. 1987, 28, 1131. c) Nakatsuka, S-I.; Teranishi, K.; Goto, T. Tetrahedron Lett. 1986, 27, 6361. d) Nakagawa, M.; Kodato, S-i.; Hongu, M.; Kawate, T.; Hino, T.; Tetrahedron Lett. 1986, 27, 6217.
- 6. Plate, R.; Hermkens, P.H.H.; Smits, J.M.M.; Nivard, R.J.F.; Ottenheijm, H.C.J. J. Org. Chem. 1987, 52, 1047.
- 7. Contrary to our earlier results, we were able to suppress the formation of β -carboline 12 by passing argon through the suspension.
- 8. Isomerisation of the compound 8b under the same conditions was not observed.
- 9. Elimination and subsequent aromatisation of compounds related to 10 and 11 has been reported, see Harrison, D.M.; Sharma, R.B. Tetrahedron Lett. 1986, 27 521.
- 10. Elevated reaction temperatures led to considerable amounts of 12.
- 11. In order to retain the homochirality of 13 during the coupling procedure, amine 8a and triethylamine were added to a cooled (-20°C) solution of an excess of 13.
- 12. Formation of 15 in a slight excess over 14 might be rationalised by kinetic resolution. When the experiment was carried out without triethylamine only diastereomer 15 was formed. When subsequently triethylamine was added 14 was formed from residual 8a and 13.
- Arx, E.v.; Faupel, M.; Bruggen, M. J. Chromatogr. 1976, 120, 224. 13.
- 14. We prepared N-(2,2,2-trichloroethyloxycarbonyl)-L-proline acid chloride (13) as described (see ref. 2) for N-(benzyloxycarbonyl)-L-proline acid chloride (26). During the course of our studies a related reaction involving 13 was reported. (see ref. 5a)